

Experts in UV254

UV254 Go! Portable

Issue Date: April 2019

Distributed by:

Tallaght Business Park Whitestown, Dublin 24, Ireland **D24 RFK3**

Tel: (01) 4523432 Fax: (01) 4523967 Web: www.labunlimited.com

Quatro House, Frimley Road, Camberley, United Kingdom **GU16 7ER**

Tel: 08452 30 40 30 Fax: 08452 30 50 30 E-mail: info@labunlimited.com E-mail: info@labunlimited.co.uk Web: www.labunlimited.co.uk

About Us

Company Mission

Photonic Measurements are the experts in UV254. We can provide solutions for the measurement of UV254 in all applications within the drinking and waste water treatment, industrial effluent, receiving water and environmental testing, amongst others. Photonic Measurements range of UV254 products allow for the measurement of UV254 and other parameters calibration from the UV254 signal such as TOC, DOC, COD and BOD.

Established in 2014, Photonic Measurements is located in Lisburn, Northern Ireland, UK.

Contents	Page No
Safety Advice	4
Introduction	5
Start-Up Guide	6
Guidelines for Use	8
Menu Screen	9
Data Screen	10
Measurement Routine	11
Measure Menu	12
Calibration Menu	14
Generate Curve	16
View Curve	19
Entering Equation	19
Calibration Example	20
View Equation	28
Settings Menu	29
Data Export	30
Care and Maintenance	32
Additional Parts	33
Path Length	34
Ranges for Surrogates	35
Specifications	36
Glossary	37
Appendices	38
1. What is Absorption	38
2. SUVA Measurement	38
3. TOC Calibration	39
4. DOC Calibration	43
Contact Us	44

Safety Advice

When using the UV254 Go! please ensure you read the manual thoroughly and follow the instructions provided.

Ensure that all necessary equipment provided in the kit is of the standard described upon purchase.

Do not use this instrument for any other usage aside from what is instructed within the manual.

Please ensure that USB port is clean and dry prior to use, remove any object that could interfere with access to the charging port.

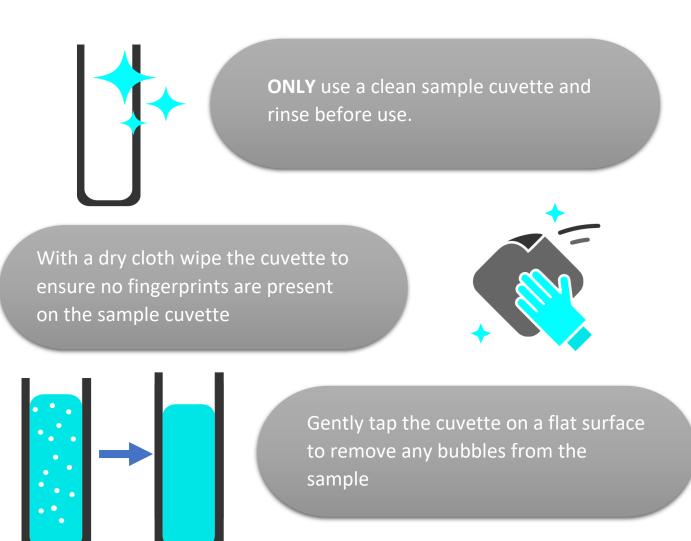
The UV254 Go! does not require any specific cleaning for daily operation. However, a dry cloth can be used to collect dust. Do not use cleaning agents or solvents on the UV254 Go!

Introduction

Photonic Measurements' UV254 Go! is a light-weight, portable device, which fits in the palm of your hand. With rechargeable Li-ion battery applications the UV254 Go! is a lab quality device that provides quick and easy measurement. Simply place a sample in the analyser cuvette and you will get your results within seconds.

- A simple icon-based user interface makes it easy to navigate between measuring, calibration and data collection.
- Long service life.
- Extensive storage capacity to preserve numerous measurements.
- Ability to generate graphical charts of data patterns.
- A USB port to connect and transfer data to your PC or Mac.
- Excel compatible, connect with device to examine data further.
- Ability to display up to four surrogate (Calibrated parameters) measurements simultaneously. For example, TOC (Total Organic Carbon).

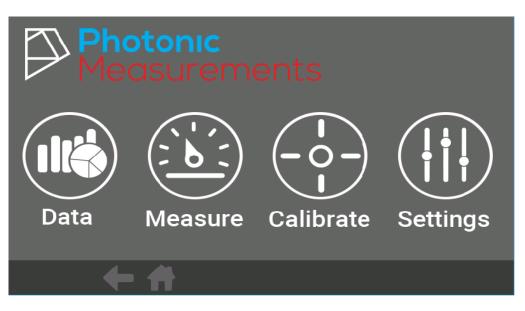
Start-Up Guide



- 1. Sample Chamber
- 2. Sample Chamber Lid
- 3. USB Charging Port with Cap
- 4. USB Charging Connection Socket
- 5. On/Off switch
- 6. Product Label and Serial Number
- 7. Touchscreen Menu

Guidelines for Use

The following steps should be used to ensure the Go! is used correctly and efficiently to obtain accurate results.



Sample cuvettes that have scratch marks or have been contaminated should be safely removed.

Menu Screen

The touchscreen menu allows the user to navigate simply through the four main sections of the analyser.

Allows user to view collection of past measurement data.

Takes a UVT/UVA reading, and various surrogate measurements can also be taken.

Add parameters and create a profile for different water sampling points/locations.

Adjust time/date, power and brightness for power save.

Data Menu

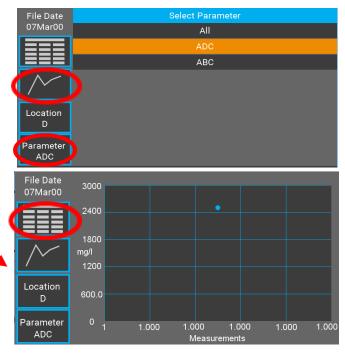
Results collected will be stored on the device. Tens of thousands of results can be collected and stored for the duration of the analyser.

To view a result, select the year – you would like to review, and press Select

Continue by narrowing down your selection by choosing a month within that year.

All results obtained within that month will be displayed, select the day you wish to view. All results from that day will be displayed.

To see a plot of results of a period of time, choose one location and one parameter and then press the graph icon.


A graph will be displayed.

Press the grid icon to return to the table view of results.

	Folder	File	Name		
			con1.go		
Select			con1.go		
	Osmala	T :	Devenueter) (- l	1 In the
File Date	Sample	Time	Parameter	Value	Units
07Mar00	Sample0	00	ADC	2500.0	mg/l
	Sample1	05:12:00	ABC	1.0	%

					9
	Sample1	05:12:00	ABC	1.0	%
	Sample2	05:12:00	ABC	2.0	%
\wedge	Sample3	05:12:00	ABC	3.0	%
/	Sample4	05:12:00	ABC	4.0	%
Location	Sample5	05:12:00	ABC	5.0	%
All	Sample6	05:12:00	ABC	6.0	%
Parameter	Sample7	05:12:00	ABC	7.0	%
All	Sample8	05:12:00	ABC	8.0	%
	\leftarrow				

File Date 07Mar00	Select Location
	All
	D
	А
\sim	
Location D	

Measurement Routine

UVT/UVA- Is the measurement of Ultraviolet Transmission and Absorbance at 254nm.

SUVA- Provides a measurement in relation to EPA415.3 DOC Input from another device will be required for this method. (Please review the standard)

Locations- These can be acquired through user calibration of measurements of parameters/ surrogates that relate to UVA.

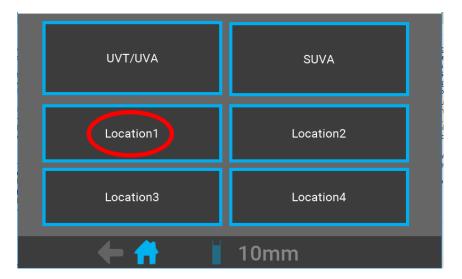
Measure Menu

Step 1:

When clicking onto Measure, select from the list of cuvette paths that you will be testing.

See appendix for information on path length.

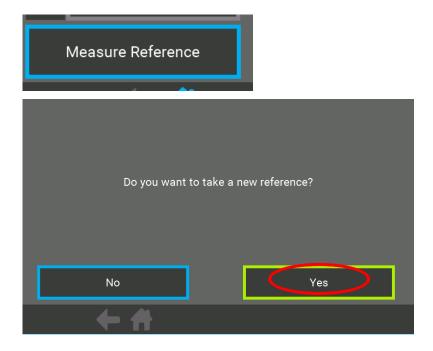
Press OK to continue.



The cuvette path selected will appear at the bottom of the screen.

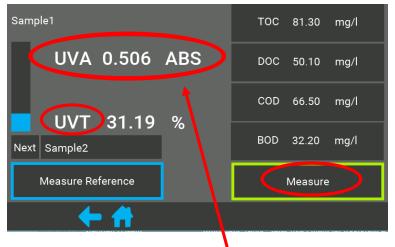
Step 2:

Next, begin by selecting the Measurement Routine


For this example, we will select Location1

Step 3:

Place reference cuvette (deionised water) into the Go!


Put the chamber lid back on after placing your cuvette into the chamber

Step 4:

Place sample into Go! and press measure.

To maintain accuracy, use the same cell that was used to take reference point

UVA/UVT are direct measurements

The list on the right-hand side is the user calibrated surrogate measurements

Calibration Menu

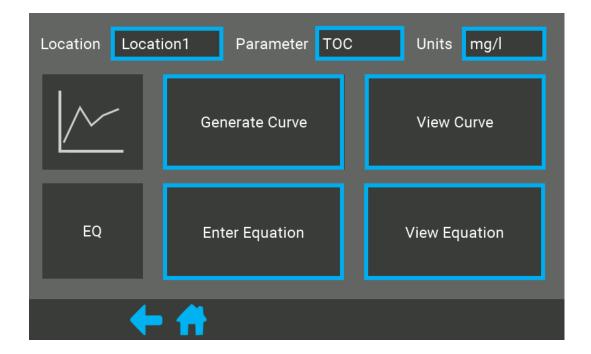
The calibrate menu button allows you to create a profile for a range of parameters known to respond to the changes in absorption at 254nm.

Enables you the ability to store these parameters from different sample points as the response can change from location to location.

For calibration procedure examples, please refer to appendices

Select a location you wish to calibrate; the name of the sample can be changed at a later stage.

User calibrated measurements of parameters/ surrogates that correlate to UV254 absorption. Parameters include; TOC, DOC, COD and BOD amongst others calibrated to UV254


Select a Parameter

Location1	
тос	DOC
СОД	BOD
🔶 🕂	

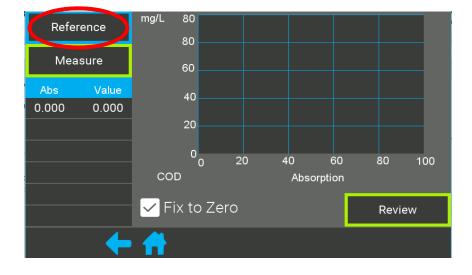
At this stage if the parameter you selected is not there this can easily be adjusted by simply selecting the item you want to change.

This will also apply if you would like to modify, edit the location, parameter or units name, simple click on the blue box for each component.

When calibrating, four options will appear on screen like so:

1. Generate Curve

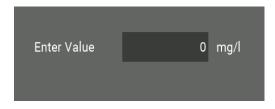
Step 1:



After clicking Generate Curve, select the sample size from the list and then click OK

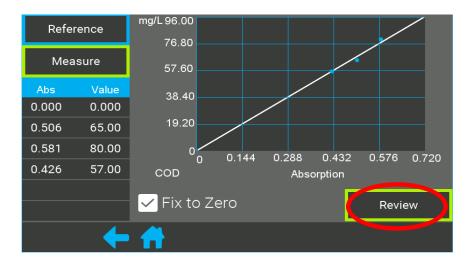
Step 2:

Prepare a reference sample Then press Reference


Step 3:

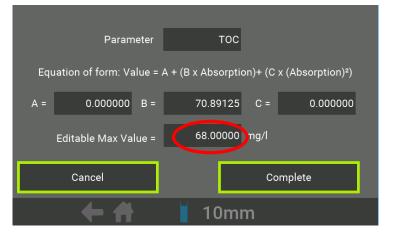
Leave reference sample in the Go! and press Measure

Step 4:

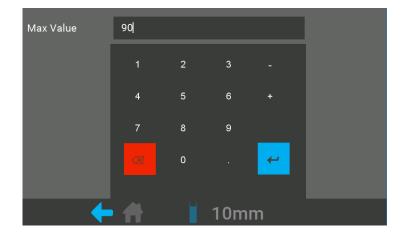

Enter the concentration, for the reference cell it will be 0mg/L

Step 5:

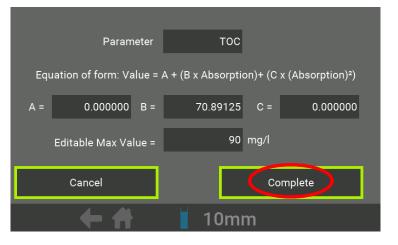
The points will appear on the graph and the initial reference point (0.0mg/L)


When you are satisfied with your results from the calibration press Review

NOTE: Number of samples will be down to your own lab procedure.


Step 6:

In review check that the maximum value for the calibration is at the top end of the expected range


Click on the editable max value to change it.

Enter a new value if necessary

Step 7:

Click complete to save the calibration

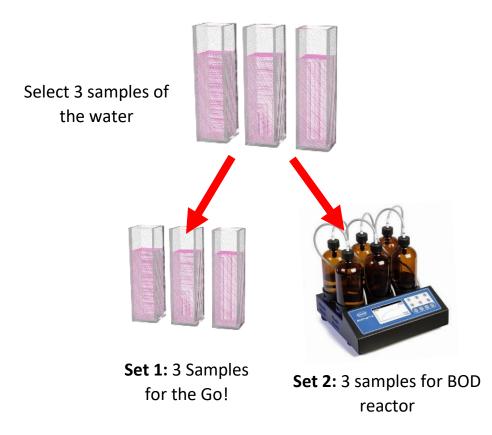
2. View Curve

The following graph will be displayed with the current calibration of the parameter selection.

mg/l 4.800 3.840 Parameter 2.880 тос 1.920 Max Value 0.960 4.000000 mg/l 00 0.188 0.376 0.564 0.752 0.940 Absorption 2.000000 3.000000 0.000000 В= C =

For calibration of parameters where the concentration is not known until a later date such as the measurement of BOD 5-Day. We must measure the water on the Go! and record the values. On the sampling day, before the concentration from the primary device is known.

View Curve

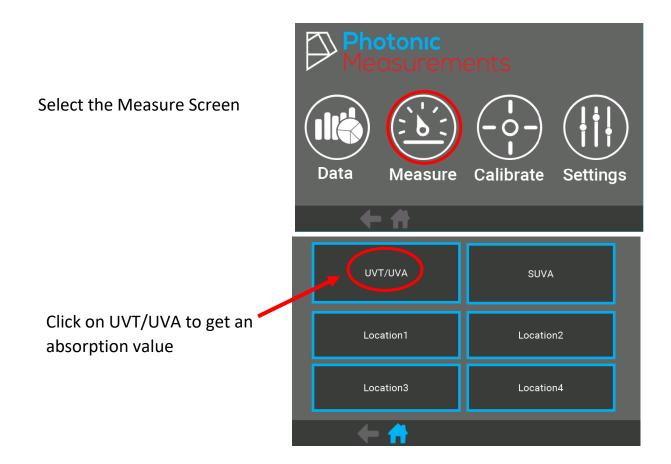

Once the concentration is discovered from the primary device. They can then be plotted in Excel and the coefficients found for the relationship. Finally, the coefficients can be entered onto the Go! The following steps describe this process.

Example: Calibrate 5-Day BOD Test

To calibrate BOD on the Photonic Measurements, Go! we recommend using BOD five-day test.

Take at least 3 samples of the water and divide them into two.
Set 1: one of each for the Go!
Set 2: one each for the five-day BOD test.
(Three samples are needed to obtain enough statistical data to perform a calibration accurately.)

Ensure the samples are labelled to ensure the measurements from each sample can be correlated correctly.


Measure BOD 5-Day

Perform the measurement of BOD using the procedure from the manufacturer of the five-day test. Once complete write the values into a table like so:

Sample Name	Value mg/L
Sample 1	BOD 5 Day measurement
Sample 2	BOD 5 Day measurement
Sample 3	BOD 5 Day measurement

Measure BOD on Go!

Due to the five days test requirement for BOD you will need to measure the absorption of each of the three samples on the day, and then wait for the result to come in from the BOD five-day test. The reason we measure on the GO! before the five-day test is to reduce any growth of organic material in the sample. Thus, instead of going to calibration we click on measurement to get the absorption. Start the Go!

Prepare a reference sample of deionised water in a cuvette.	UVA 0.000 ABS
Click Reference	UVT 0.000 % Next Sample1
Reference	Measure Reference Measure

Next, Measure Sample 1

Fill cuvette with sample

It is best to use the same cuvette used to take the Reference.

Place a small amount of Sample 1 into the cell (1/10 off cell height) and gently shake sample in the cuvette and empty.

Lastly, place Sample 1 into the cuvette (3/4 full) and place into the Go!

Click Measure	Measure	
Write down the UVA Value for Sample 1, as shown below in the table. The value 0.506 is used for	uva 0.506 ABS UVT 31.19 % ext Sample2 Measure Reference	Measure

Sample Name	Value ABS
Sample 1	0.506
Sample 2	Enter UVA/Absorption value
Sample 3	Enter UVA/Absorption value

Continue this process for Sample 2 and Sample 3, then record values in the table. Lastly, when the 5-Day BOD test is complete, record each of the values.

Calculate the Calibration using Excel

Ensure that you put '0' for both measurements- this will help with creating a straight line.
 B
 C

 ABS
 mg/L

 0
 0

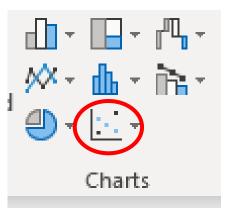
 0.506
 33

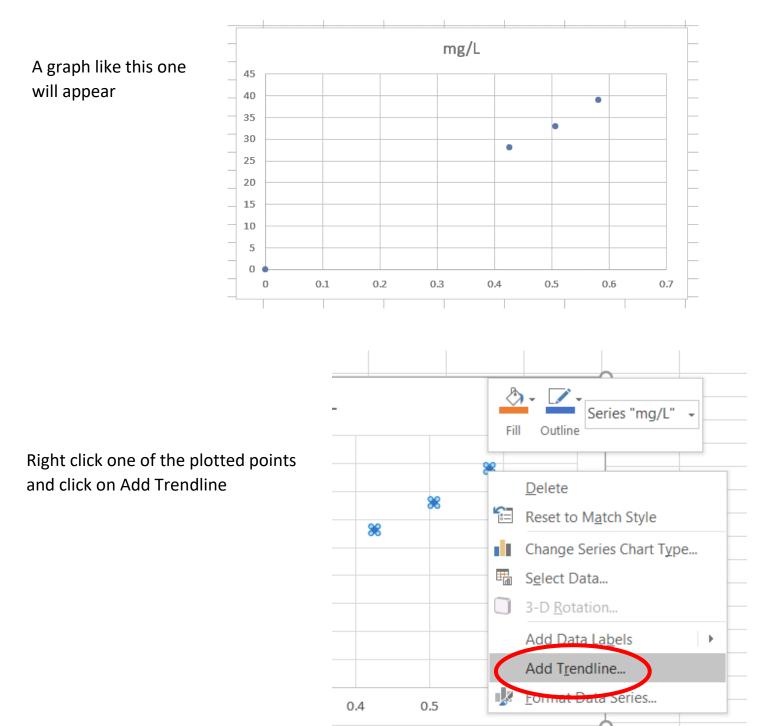
 0.581
 39

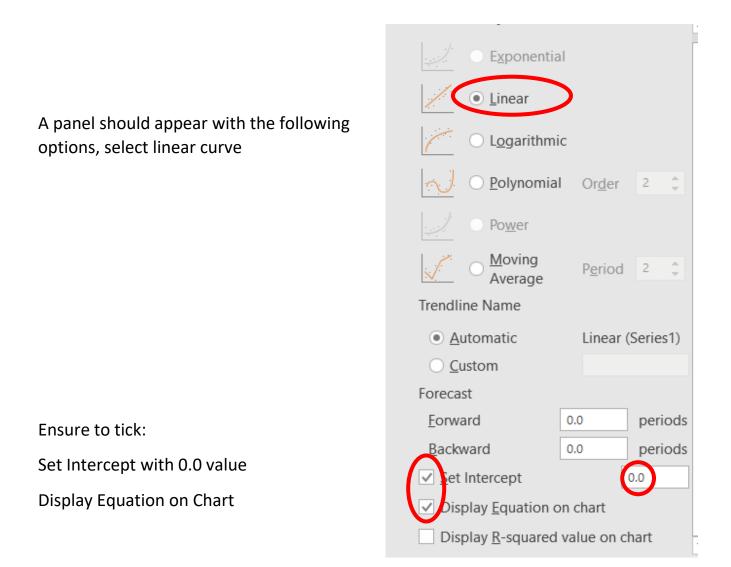
 0.426
 28

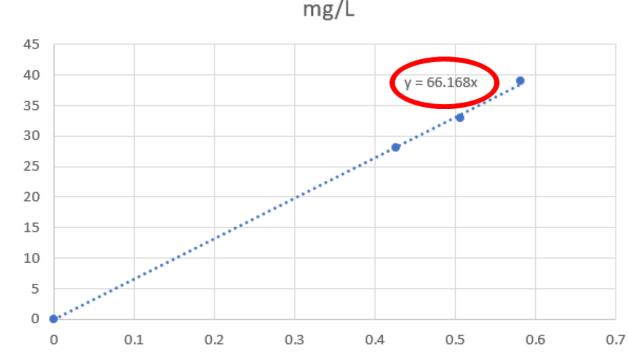
Begin by opening a new spreadsheet and enter the data points collected from both the Go! and BOD 5-day test.

Press Insert on the top menu bar in Excel to display data

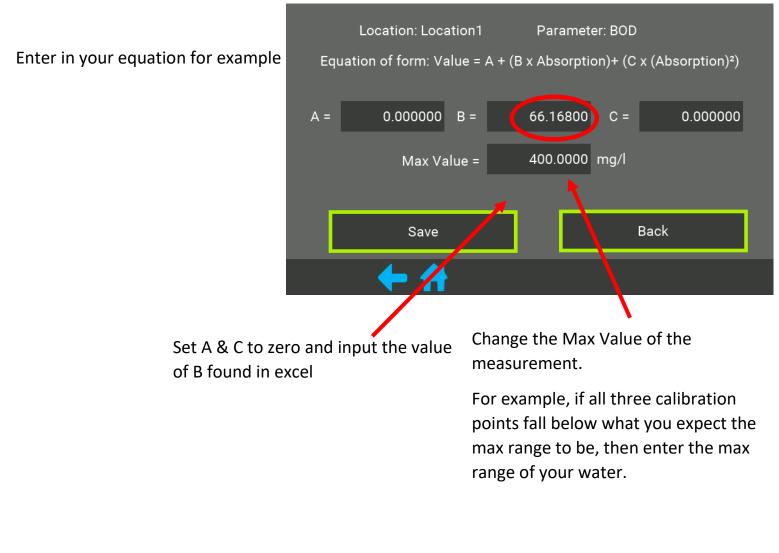

В	С	
ABS	mg/L	
0	0	
0.506	33	
0.581	39	
0.426	28	
e Ins	ert P	


File	Home	Page Layout	Formulas	Data	Review	View	Add-ins	Help	Team
2	2			_	nartArt reenshot -	🕂 Get Ado	d-ins	> =	h
PivotTable	Recommended PivotTables		nline Shape ctures 👻	s ⊡ + SC	reenshot .	🔊 My Add	1115	ing Peop aps Gra	
	Tables		Illustratio	ons			Add-ins		
B1 \cdot : $\times \checkmark f_x$ ABS									
				А	В	С	D	E	
Docu	ment Reco	overy	1		ABS	mg/L			
			2		0	0			


Excel has recovered the following files. Save the ones you wish to keep.


	Α	В	С	D	E	
1		ABS	mg/L			
2		0	0			
3		0.506	33			
4		0.581	39			

When you press Insert across the menu bar click Scatter Graph in Charts


mg/L

Input calibration data into the Go!

The value displayed will be the B value of the equation

Mg/L= A+ (B x UVA) + (C x UVA) where A and C are zero.

The equation then forms the relationship between the UVA measurement of the Go! and for example, BOD five-day results

Lastly, to ensure the calibration is stored in the system. Press Save.

0	
Save	

4. View Equation

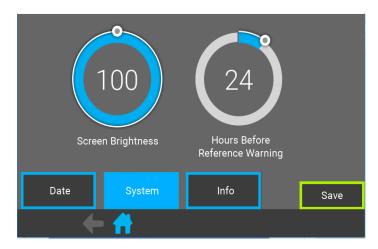
View Equation

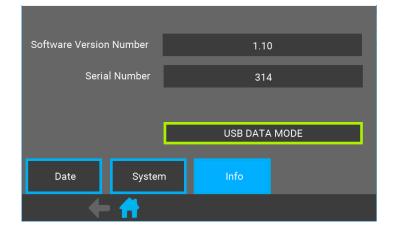
Your equation will appear in the fields on the screen for the given location and parameter.

L	ocation: Location2	Parameter: TOC
Equatio	on of form: Value = A +	+ (B x Absorption)+ (C x (Absorption)²)
A =	2.000000 B =	3.000000 C = 0.000000
	Max Value =	4.000000 mg/l
		Back
	← 🕂	

Settings Menu

Settings Menu will allow you to adjust certain screen preferences on the device.


Date and Time, can be found in this section by pressing the date button, simply scroll to find the correct date and press the Save button

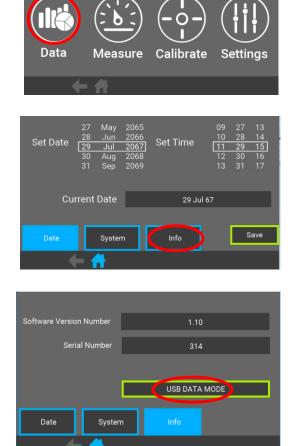

Press System to adjust screen brightness and hours before reference warning. Managing the brightness will enhance the battery charge.

'Hours Before Reference Warning' simply means after a set time the system will alert you that a reference should be taken.

Information will provide the user with the analyser's software version number and serial number.

Data Export

The UV254 Go! can be connected via USB cable to a PC or MAC. The Go! will act like a USB flash drive by simply clicking into Documents on your device where it should appear on the left-hand side of the menu.

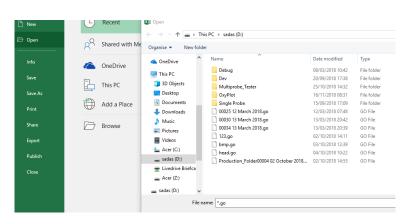

Settings > Info > USB Data Mode

To transfer data to your device, follow these steps: firstly, press to Settings on the Go!

Press Info located at the bottom of the screen

Press USB Data Mode to begin the connection between the GO! and your PC

To access a specific measurement, select the folder starting with the year and month the measurement was taken.


→ This PC → Acer (Z:) → 19 → Mar

Access Data *. GO in Excel

Click File > Open > Browse > *.go > Enter

Type in *.go as below and click on file.

Eile namer	*
File name:	".go

A menu bar will open complete the steps as follows: press Delimited

Then ensure tab, comma and other with a colon is ticked and press Finish

Text Import Wizard - Step
The Text Wizard has determ
If this is correct, choose Nex
Original data type
Choose the file type that
Fixed width - Fiel

Text Import Wizard - Ste

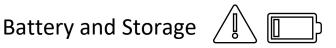
This screen lets you set th

:

Γ

Te

preview below.


Delimiters Tab Semicolon Comma > Space Other:

Finish

Care and Maintenance

Contact with water will not disrupt the use of the UV254 Go! it will not damage the internal components. However, ensure that the device is dry before use.

The UV254 Go! can be cleaned with a dust cloth as regularly as possible.

The internal battery is Lithium Polymer. it is recommended that the UV254 Go! device be stored in temperatures between 5 and 27 degrees. Precautions should be taken when leaving the device in a car during extreme weather conditions.

Warranty and Disposal

The UV254 Go! has a 2-year warranty, subject to use according to the manufacturer's instructions.

It is important to note upon disposal of the UV254 Go! device - the Lithium Polymer battery must be fully discharged before taking the device to your local recycling facility.

Additional parts

- 1. Charger
- 2. Sample Container
- 3. Battery Bank
- 4. Additional Cuvettes
- 5. USB cable for export data and charging
- 6. Bottles for easy dispensing samples
- 7. Cuvettes

Path Length

Sample Cuvette- should be clean and dry before use. Gently place the Cuvette into the cell chamber on top of the Go! see page 6 for Start Up instructions. Cuvettes should be rinsed with deionised water. If sample cuvette contains frosted sides, ensure that the clear sides are facing the light. This can impair the result if not placed in to the chamber correctly.

Path Lengths- is the distance light travels through a sample within a cuvette. Usually a cuvette will be made of quartz between 0.1mL to 10mL size.

The absorbance of the water is not only proportional to the concentration of the material being absorbed but also the optical path length of the sample (Beers Law)

Therefore, UVA and UVT measurements must be given for a certain path length. The path length of 10mm/1cm is used and the absorption is reported abs/cm. This can be set to other values if applicable such as abs/m

The UV254 systems are equipped to facilitate different optical paths. The measurement of absorption is converted to abs/cm no matter what size the optical path. The larger the optical path the more sensitive the measurement will be, whereas smaller optical paths are better suited to measuring higher UV254 absorption such as found in waste water applications.

Ranges for Surrogates

For the UV254 Go! the standard pathlength is 10mm other path lengths. Using a cuvette adaptor smaller cuvette sizes can be used.

Ranges for the UV254 Go!

Parameter	0.5mm path length in mg/L	1mm path length in mg/L	2mm path length in mg/L	5mm path length in mg/L	10mm path length in mg/L
COD	0-5600	0-2800	0-1400	0-560	0-280
BOD	0-2800	0-1400	0-700	0-280	0-140
TOC	0-2400	0-1200	0-600	0-240	0-120
DOC	0-2000	0-1000	0-500	0-200	0-100

Accuracy for the UV254 Go!

Parameter	0.5mm path length in mg/L	1mm path length in mg/L	2mm path length in mg/L	5mm path length in mg/L	10mm path length in mg/L
COD	2	2	1	0.4	0.2
BOD	1	1	0.5	0.2	0.1
TOC	1	1	0.5	0.2	0.1
DOC	1	1	0.5	0.2	0.1

Specification

Measurements	UVA, UVT and SUVA		
	Surrogate measurements		
	TOC, BOD, COD and others		
Range	0-100% UVT		
	0-2.5 ABS, is extendable with shorter pathlength cuvettes		
Accuracy	±0.5% UVT		
Repeatability	±0.05% UVT		
Cuvettes	10mm square UV Quartz Cuvette		
	1,2,5 & 10mm options		
Measurement Time	10 Seconds		
Power	Internal Lithium Polymer Battery		
	USB Charger		
Wavelength	254nm		
	LED and narrow filter photodiode		
Light Source	Deep UV LED		
	Long life, self monitoring		
Data Logger	Life time measurement storage.		
Dimensions	150x180x77mm		
Display	800 x 480 pixel 4in		
	Capacitive Touch		
	TFT colour LCD		
Operating	10 to 45°C, max 80% relative		
Conditions	humidity (non-condensing)		
Storage	-20 to 60°C, max 80% relative		
Conditions	humidity (non-condensing)		
Enclosure Rating	IP65		
Interfaces	USB for data retrieval		
Warranty	2 years		

Glossary

Total Organic Carbon (TOC)

(DOC + Suspended Organic Carbon = TOC)

TOC can come from a range of sources such as decaying natural organic material (NOM) and synthetic sources for example industrial chemicals. NOMs can react with chloride and as a result can combine to cause harmful by-products

Dissolved Organic Carbon (DOC)

Part of TOC found in the water. It is the part that combines with chlorine to cause harmful by-products. DOC acts as a food source for bacterial and other microorganisms.

Biochemical Oxygen Demand (BOD)

A measurement of the amount of dissolved oxygen that is needed for aerobic biological organisms in a volume of water to breakdown the amount of organic material at a given temperature over a certain time period. This can be tested using the BOD 5-day test. For water being returned to the environment, the level of BOD is important to maintain aquatic life. Too low- there will be a lack of oxygen and too high- can result in suffocation of aquatic life.

Chemical Oxygen Demand (COD)

The amount of oxygen consumed over a given volume of given in mg/L. COD is different in that COD is the organic compounds that can be chemically oxidised.

Ultraviolet Transmission (UVT)

UVT is the measurement of UV energy at a wavelength or frequency which is transmitted through water

Ultraviolet Absorption (UVA)

UVA is the measurement of light that is absorbed by the sample.

Specific Ultraviolet Absorption (SUVA)

Provides a measurement in relation to EPA415.3 DOC Input from another device will be required for this method.

Surrogate

Is a substitute measurement.

Appendices

Appendix 1: What is Absorption

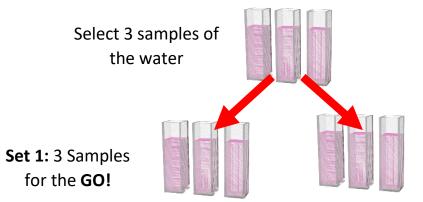
Absorbance is a measure of the amount of light that is absorbed by the sample.

The absorbance value A = 2 - log – (T)

Appendix 2: SUVA Measurement

Environmental agencies such as the EPA (method 415.3) use specific UV absorbance (SUVA) as a measurement for determining the disinfection byproduct (DBP). The measurement is the ratio of absorption of UV254 to the dissolved organic carbon (DOC) concentration. The larger the SUVA the more of the total organic material is made up of aromatic organics. Aromatic organics are highly reactive with disinfectants and thus level of aromatics will greatly increase the risk of DBPs.

Appendix 3: TOC Calibration

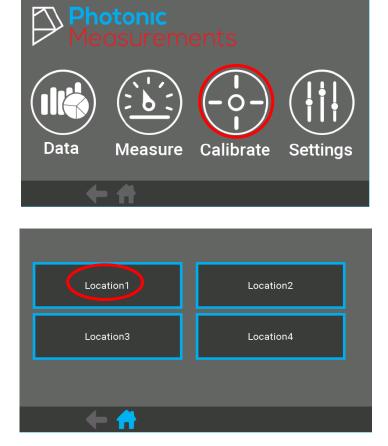

Tools Needed:

- Photonic Measurement UV254 GO!
- Quartz Cuvette
- Deionised water
- Spectrophotometer or Photometer
- TOC Reagents
- TOC Reagent procedure requirements such as a Block heater.

How to Calibrate TOC:

Firstly, it is recommended using TOC reagents and Photometer from manufactures such as Lovibond and Hach.

Take at least 3 samples of the water and split into two. Like so:



Set 2: 3 for Photometer/Spectrophotometer

Perform the measurement of TOC using the procedure from the TOC reagent manufacture. Enter the results for each sample in a table for example:

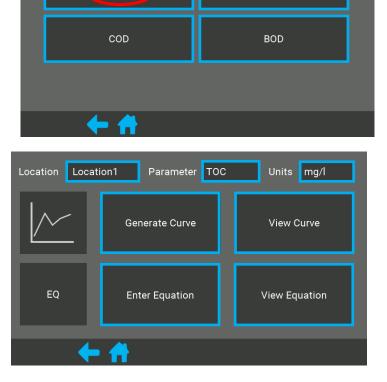
Sample Name	Value mg/L
Sample 1	Enter Photometer measurement here
Sample 2	Enter Photometer measurement here
Sample 3	Enter Photometer measurement here

Start the Go! by using the switch on the back of the device. Press **Calibrate**

store the calibration on for example **Location1**

Select a location where you will

Each Location can save up to 4 calibrations. In total 16 calibrations can be saved on the Go!


Location1

тос

Select a Parameter for example TOC

On the top of the screen you can change the location, parameter or units name. Simply click on the blue box and enter your updates.

Once complete, select Generate Curve

DOC

Prepare a reference sample of deionised water into a cuvette

Then, click the Reference button

Keep the deionised water reference sample in the GO! and then click Measure

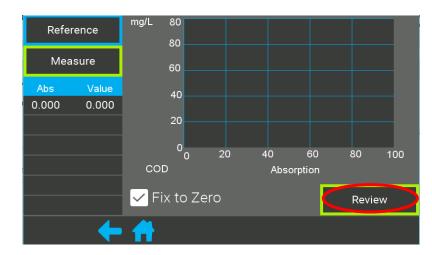
Enter the value in the box (mg/L) for the sample.

The reference sample will remain at Omg/L

When the value has been entered press Measure

Next, measure sample 1.

Reuse the same cuvette used to take reference. Place a small amount of sample 1 into the cuvette, 1/10 off cuvette height and then gently shake the contents within the cuvette and empty


Continue the same process with 3/4 off cuvette height and place into the Go!

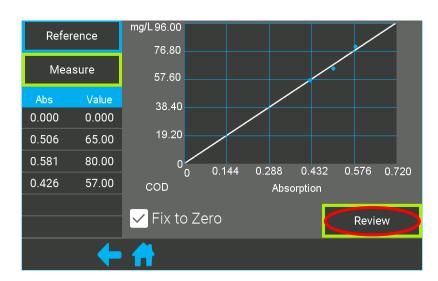
41

Measure

Click measure and then enter the value for sample 1. For example, if sample 1 was 65mg/L from the photometer enter it in the box show below.

Continue this process for sample 2 and sample 3.

Three points will appear on the graph along with the point at 0.0mg/L from the reference.


Once all calibration points have been measured click on Review

Edit the Max Value of the measurement. For example, if the three calibration points fall below what you expect the Max Range to be, then enter the Max Range of your water.

For example, 400mg/L

Lastly, press Complete to store your calibration.

Description	700
Parameter	тос
Equation of form: Value =	A + (B x Absorption)+ (C x (Absorption)²)
A = 0.000000 B =	133.7384 C = 0.000000
Editable Max Value =	80.00000 mg/l
Cancel	Complete
← #	

Appendix 4: DOC Calibration

NOTE: Follow a similar procedure to that of TOC in the previous appendix

Appendix 5: How to use the UV254 Go! Analyser

It is important to note, that buttons on screen will be coloured green or blue like so:

Blue represents - Active Button

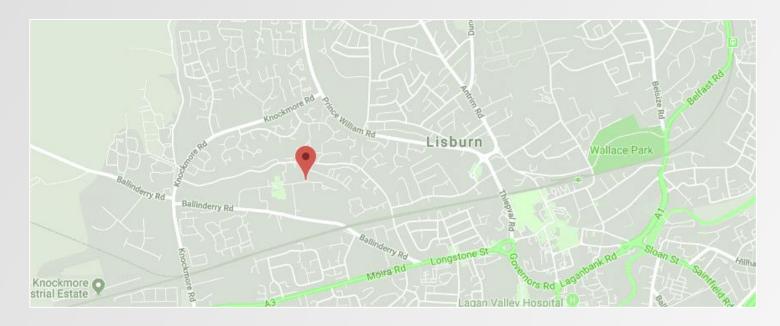
Green represents – Guided Button option (suggested choice)

Operating Touchscreen User Interface:

Touchscreen allows for simple movement between different sections, scroll with finger to navigate through data like so:

File Date	Sample	Time	Parameter	Value	Units	
07Mar00	Sample0	00	ADC	2500.0	mg/l	
	Sample1	05:12:00	ABC	1.0	%	S
	Sample2	05:12:00	ABC	2.0	%	Scroll
\wedge	Sample3	05:12:00	ABC	3.0	%	
/	Sample4	05:12:00	ABC	4.0	%	qu
Location	Sample5	05:12:00	ABC	5.0	%	and
All	Sample6	05:12:00	ABC	6.0	%	
Parameter	Sample7	05:12:00	ABC	7.0	%	down
All Sample8	05:12:00	ABC	8.0	%	3	

Contact Us


For more information, please contact us at:

3 Crescent Business Park

Lisburn

BT28 2GN

(+44) 02892106263

Distributed by:

Lab Unlimit CARL STUART GROUP

Tallaght Business Park Whitestown, Dublin 24, Ireland **D24 RFK3**

Tel: (01) 4523432 Fax: (01) 4523967 Web: www.labunlimited.com Quatro House, Frimley Road, Camberley, **United Kingdom GU16 7ER**

Tel: 08452 30 40 30 Fax: 08452 30 50 30 E-mail: info@labunlimited.com E-mail: info@labunlimited.co.uk Web: www.labunlimited.co.uk